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Abstract—Application mapping with its ability to spread out 

high-power components can potentially be a good approach to 

mitigate the looming issue of hotspots in many-core processors. 

However, very few works have explored effective ways of making 

tradeoff between temperature and network latency. Moreover, 

on-chip routers, which are of high power density and may lead to 

hotspots, are not considered in these works. In this paper, we 

propose TAPP (Temperature-Aware Partitioning and Placement), 

an efficient application mapping algorithm to reduce on-chip 

hotspots while sacrificing little network performance. This algo-

rithm “spreads” high-power cores and routers across the chip by 

performing hierarchical bi-partitioning of the cores and concur-

rently conducting placement of the cores onto tiles, and achieves 

high efficiency and superior scalability. Simulation results show 

that the proposed algorithm reduces the temperature by up 

to 6.80°C with minimal latency increase compared to the latency-

oriented mapping solution. 

I. INTRODUCTION 

With continued technology scaling, the number of processing 
cores on-chip has been growing to tens or even a hundred [5][8][19]. 
Consequently, networks-on-chip (NoCs) have been adopted as the de 
facto architecture in large application-specific multiprocessor systems-
on-chips (MPSoCs) and general-purpose chip-multiprocessors (CMPs) 
to support communication of many concurrently running threads. In 
these NoC-based many-core systems, an important design and run-
time step is application mapping, which maps the threads of applica-
tion(s) to distributed tiles. Since application mapping affects nearly all 
aspects of on-chip communication, it is critical to the efficacy of NoC 
as well as the overall many-core system.  

Application mapping has drawn great attention over the past dec-
ade and has been optimized for various objectives such as network 
latency, power, energy, cost, fairness (to list a few, [7][9][13][20]). 
However, very few works have considered application mapping with 
the awareness of chip temperature (to our knowledge, only [1][10][15] 
do this), despite the large impact of mapping on the chip temperature 
and the impact of temperature on performance, reliability, lifetime, 
and leakage power dissipation of the chip [16]. Moreover, none of 
these works take into account the thermal effects of on-chip routers. 
That is, only the core power consumption is accounted for as a heat 
source in those mapping schemes, leading to inaccurate and possibly 
erroneous hotspot estimation. In fact, as shown in Section III, NoC 
routers, which have relatively small chip area but large power con-
sumption, can potentially become hotspots themselves. In addition, 
existing temperature-aware mapping schemes all use search-based 
algorithms, which are very slow to generate satisfying mapping results 
under execution time constraints, especially if runtime mapping ad-
justments are needed. 

In this paper, we address the imperative issue of temperature-
aware application mapping with the consideration of NoC router pow-
er. A fast yet effective mapping algorithm, called TAPP (Tempera-
ture-Aware Partitioning and Placement), is proposed. The key chal-
lenge is to balance the potential conflict between the chip temperature 
and the network latency. The basic idea of TAPP is to “spread” core 
and router power by hierarchical bi-partitioning while concurrently 

performing partial block placement in each partitioning iteration. Both 
core and NoC router power consumption, as well as network latency 
factor, are reflected in the cost function of min-cut in partitioning and 
the cost function in placement.  

The main contributions of this paper are the following. We (i) ana-
lyze the importance of taking into account the NoC router power in 
application mapping, (ii) formulate the problem of temperature-aware 
application mapping that considers the thermal effects of both cores 
and the NoC routers, and (iii) propose an efficient heuristic-based 
algorithm with       time complexity (  is the network size), suita-
ble for both design-time static mapping and run-time dynamic map-
ping. 

II. BACKGROUND AND MOTIVATION 

A. Temperature Model 

A common approach to accurately capture the steady-state thermal 
distribution while requiring limited input parameters is the thermal 
resistance model [12]. To facilitate the modeling of tile-based many-
core chips, we consider each tile as one power source, whose power is 
the summation of the power consumption of the core and the co-
located router on that tile.  

The temperature increase of a node with coordinate       (i.e., a 
tile in the context of this work) is the summation of the temperature 
increase introduced by the power source on this node and on every 
other power sources: 

              

 

   
  (1)  

The temperature increase     by the power source at tile   is a 
function of the power consumption    of the source and the distance    
between the node at       and tile  , i.e., 

               (2)  

where         is the temperature increase caused by unit power 
of a heat source, and it only depends on the Euclidean distance    be-
tween the node in question and the source. According to curve-fitting 
HotSpot [17] simulation results, it is subject to exponential decay with 
  . 

B. Packet Latency Model 

The packet latency model is derived based on [4][20] to calculate 
the on-chip network latency      of a packet generated at the  -th tile 

and heading for the  -th tile, i.e., 

                                     (3)  

where      is the number of hops between tile   and tile  , which is the 

Manhattan distance for mesh network with XY routing.    ,    ,    , 

and     are the per-hop latency for router and link, per-router queuing 
latency (0~1 cycles as observed in the simulation), and serialization 
latency (pre-determined for a given packet format and NoC architec-
ture), respectively. 

C. Thermal Impact of NoC Routers 

NoC routers may have large impact on thermal issue due to their 
higher power-to-area ratio compared to other on-chip components. To 
illustrate, Figure 1 plots this ratio for the main components in Scorpio, 
a newly fabricated 36-core CMP [5]. With 10% of chip’s area and 19% 



of chip’s power, NoC has the highest power-to-area ratio. Figure 2 is 
the thermal map of Scorpio by inputting the key chip parameters to 
Hotspot [17]. The figure shows that NoC component can potentially 
be the hotspot in each tile. However, reducing NoC temperature in 
application mapping requires placing high-power cores far from each 
other, whereas the goal of reducing on-chip latency may require these 
active cores as close as possible. To address this issue, new tempera-
ture-aware mapping scheme is much needed, as proposed in this work. 

III. PROBLEM FORMULATION 

Suppose a NoC-based system has   tiles, and a set of   threads 
(cores) to be mapped onto the chip. We define the thread communica-
tion graph (TG) as follows: within the TG, a vertex   where   
          indicates one thread, its weight    is the power consump-
tion of this thread, and the directed edge from thread   to   has the 
weight      representing communication rate, i.e., the average number 

of flits sent from thread   to thread   per unit time length. 

Another directed graph, the tile latency graph (LG), has each of its 
vertex indicating one tile on the chip, and the edge from tile   to tile   
has the weight      indicating the average packet latency of sending 

one flit from tile   to  . A router is affixed to each tile, and its power 
consumption is calculated by  

                     (4)  

where        is the static power consumption of the router, and 

       is the dynamic power consumption which is a function of the 

traffic going through this router    (in flits per cycle), calculated by 
the sum of      where the communication between core   and   goes 

through this router. This relies on the locations of core   and  . There-
fore,    is dependent on the core mapping results.  

The goal of application mapping is to find a permutation  

                             (5)  

where        denotes that the  -th core is mapped onto the 
    -th tile.  

As network latency is among the most important criteria of on-
chip networks, the temperature-aware mapping methods should ensure 
as little latency increase as possible while reducing on-chip tempera-
ture. The overall average packet latency   and the maximum on-chip 
temperature    are calculated by 
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where             is the coordinates of tile     . 

Therefore, the optimization goal of the proposed temperature-
aware mapping algorithm is the balance between the maximum on-
chip temperature    and the overall average packet latency  , 

         (8)  

The units of coefficients   and   are cycle-1 and K-1, respectively. 
The objective function can be adjusted by varying these two coeffi-
cients. 

Unfortunately, this optimization problem is hard. Even with 
    in the formulated problem (latency-minimizing mapping), this 
simplified version has the form of a Quadratic Assignment Problem 
(QAP), which is NP-hard. Thus, the scalability of exact algorithms is 
greatly restricted due to their high complexity, and an efficient heuris-
tic algorithm is needed.  

IV. PROPOSED SOLUTION 

A. Motivation 

In traditional circuit partitioning algorithms, the primary goal is to 
find the min-cut of a graph of gates, i.e., to minimize the total weight 
of interconnections that cross the cutline. We apply similar approach 
to application mapping based on Kernighan–Lin (KL) algorithm [11], 
considering two factors in the weight of interconnection. First, the 
weight needs to reflect the overall traffic (communication rate) be-

tween two partitions   and  , i.e.,    
   

            . Since higher 

power density regions usually lead to hotspots, the on-chip power 
consumption should be evenly spread out in order to reduce the max-
imum chip temperature. Therefore, we add the difference in power 

consumption between two partitions to the total cost    
   

 of a cutline, 

the second factor in addition to the traffic cost. In this way, minimiz-

ing    
   

 means concurrently balancing power and minimizing latency 
during partitioning.  

Specifically, the partition cost of a cutline    
   

 which divides the 

current graph into block   and   is calculated by 

   
   

        

       

         
   

     
   

  (9)  

where the power     of each tile   on a partition is calculated as the 
sum of the core power   , the NoC router static power and the part of 
router dynamic power caused by all the communication generated at 
or destined for this tile. Note that the part of router dynamic power 
caused by forwarding bypassing traffic is not included as it depends 
on the mapping results and is not reflected at this step. It will be ac-
counted for in the final temperature and latency calculation.  

The above equation (9) and the min-cut approach provide a quasi 

means of performing tradeoff in equation (8): increase       value 

towards more latency-oriented mapping, and decrease       towards 
more temperature-oriented mapping. 

B. Temperature-Aware Partition-and-Placement (TAPP) 

The key idea behind the proposed TAPP is that the block place-
ment is carried out concurrently within each iteration of the hierar-
chical bi-partitioning. TAPP consists of three steps.  

1) Step 1: Horizontal Partition-and-Placement. 
The first step is to conduct horizontal partitioning with placement 

until the size of each partition equals one row in the mesh network, 

based on the partitioning cost calculation    
   

 in (9). Each iteration 

includes the partitioning and placement of all the current blocks, so 
the number of blocks doubles after each iteration, as shown in Figure 
3. As soon as the min-cut partitioning is finished in each partition, the 
placement order of the two blocks is determined right away. 

Take the third iteration as an example, where the size of each 
block after partitioning is    . Suppose the partition and placement is 
performed from the bottom to the top, and the first and second parti-
tion-and-placement iterations have been finished (the shadowed four 
blocks in Figure 3). The third block is partitioned into two blocks,   
and  . Whether   or   is placed on top is determined by the costs of 

 
Figure 1. Power densities of 
different components on a tile 

in Scorpio. 

 
Figure 2. Thermal map of one tile in 
Scorpio (the core has three parts due to the 

rectangular restriction in  HotSpot). 
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Figure 3. Step 1. 
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these two placement options. For example, the cost of   placed on top 

    
  

 is the sum of the communication cost and the temperature in-

crease caused by   and  , comprised of   on top       
  

 and   at 

bottom       
  

. The former can be calculated by the following equa-

tion (note that this cost in placement is different from the partitioning 
cost used in min-cut): 

      
  

                                

 

 (10)  

where                  is the total communication rate between 

block   and a placed block  (e.g., a shaded block),      and      are 

the Manhattan distance and Euclidean distance between the centers of 
  and  . This is because the tile assignment of each individual core 
might not be determined at this stage, so we assume all the cores with-
in each block are placed at the center. Similarly we calculate the   

part       
  

, sum it up with       
  

 to get     
  

, and then compare it 

with the cost of   placed on top     
  

. 

The horizontal partition-and-placement in Step 1 has       itera-

tions, each iteration containing      times of KL partition algorithm. 

The evaluation for placement after each partitioning takes       

because the number of rows is      . Since the time complexity of 

KL is       for a graph of size   [11], the time complexity of Step 1 
is calculated by 

          
 

     
 

        
     

   
       (11)  

2) Step 2: Vertical Partition-and-Placement 
With the cores assigned to each row determined after the first step, 

we perform the vertical bi-partitioning with placement hierarchically 
until each block contains one core.  

In each iteration, the bi-partitioning is performed bottom to top, 
and left to right, as shown in Figure 4. Each of the current blocks is 
partitioned with minimum cost as in (9), and the order of the two 
blocks after partitioning is calculated similarly as in the horizontal 
placement. For example in Figure 4, after the partitioning of the   and 
  block, we calculate the temperature and latency costs of all the 
placed blocks (including the placed blocks in the same row) caused by 
  and   in the two placing ways, i.e., either   on the left or   on the 
left, and choose the one with smaller cost. 

Step 2 performs KL hierarchically for each row with size    sim-
ilar to in Step 1, but the placement evaluation takes      instead of 

     , therefore the time complexity is         
 
       

             . 

3) Step 3: Local Adjustment 
Before reaching the final placement solution, we conduct local ad-

justment to the assignment generated in Step 2 as fine tuning. A 2x2 
window is slid from bottom left to top right, and the 24 permutations 
of the four cores inside the window are evaluated, and we greedily 
pick the permutation with minimum cost to assign them to the four 
tiles, with       complexity. 

To sum up, the timing complexity of TAPP is      . 

C. Applicability in Run-Time Application Mapping 

Run-time mapping can be much needed in many-core processors 
with dynamic workloads, for example, where new threads are allocat-
ed to replace the ones that have been finished while other unfinished 
threads continue running on certain tiles. Unlike the exiting time-
consuming temperature-aware mapping algorithms, the proposed 
TAPP is applicable for dynamic mapping. Specifically, to solve the 
run-time mapping problem in TAPP, the running threads are consid-
ered as fixed nodes in the KL partition algorithm, and the order of the 
two partitioned blocks is also fixed if any one of them contains a fixed 
block.  

V. SIMULATION RESULTS 

A. Simulation Setup 

The proposed problem and schemes are evaluated with both CMP 
traces and MPSoC traces. The CMP traces are generated by the cycle-
accurate gem5 simulator [3] and the McPAT power modeling frame-
work [14], with the multi-threaded PARSEC benchmarks [2]. The 
MPSoC task graphs and power traces are generated by TGFF [6]. The 
interconnection power consumption is calculated by DSENT [18]. 

We have the following five schemes. 

1. Random, the average latency and temperature of randomly gener-
ated mapping results; 

2. MinLat_SA, a simulated annealing algorithm aiming at minimiz-
ing the overall average packet latency, as the baseline algorithm; 

3. CoreOnly_SA, a temperature-aware simulated annealing algo-
rithm which considers only core power for generating mapping 
(the final temperature calculation includes routers); 

4. CoreNoC_SA, a temperature-aware simulated annealing algorithm 
solving the proposed temperature-aware mapping problem, i.e., 
considering both core power and NoC power; 

5. CoreNoC_TAPP, the proposed heuristic algorithm to solve the 
temperature-aware mapping problem. 

B. Temperature and Latency Results 

We test the five schemes on an 8x8 mesh network with grid size = 
1 mm. For the CMP traces, we use four groups P1, P2, P3, and P4 as 
listed in Table I, each of them containing four 16-thread PARSEC 
benchmarks. For the MPSoC traces, we use TGFF to generate four 
application graphs for the 64 cores to be placed, as listed in Table II. 
The wide range of configurations in these two tables show a repre-
sentative set of workloads. 

The CMP results and MPSoC results are plotted in Figure 5 as the 
tradeoff curves of temperature and latency. The latency achieved by 
Random is around 28.7 cycles for CMP and 30.7 cycles for MPSoC, 
and the Random temperature result is shown as text. Note that the 
CMP results show less than 20 cycles in delay because the actual 
communication graph of each of the four groups is comprised of four 
disconnected subgraphs due to the lack of inter-application communi-
cation. 

We have the following three observations.  

First, it is noted that the MinLat_SA which solely minimizes the 
average network latency reduces the on-chip temperature compared to 
Random mapping result because the MinLat_SA greatly reduces the 
NoC communication power.  

Second, the CoreOnly_SA, which only considers the core power 
consumption during mapping, decreases the hotspot temperature, but 
still averagely 1-2°C higher than the two solutions with NoC power-
awareness. This demonstrates that the proposed problem which takes 
into account the NoC power is a better description of real thermal 
distributions on chip. 

TABLE I. PARSEC BENCHMARK CONFIGURATIONS. 

No. PARSEC Benchmarks    Avg    Std dev 

P1 blackscholes, bodytrack, canneal, ferret 0.4564 0.1678 

P2 bodytrack, canneal, ferret, vips 0.5036 0.1028 

P3 blackscholes, dedup, ferret, fluidanimate 0.3938 0.1779 

P4 canneal, fluidanimate, swaptions, x264 0.3717 0.0757 

TABLE II. TGFF BENCHMARK CONFIGURATIONS. 

Testbench    Avg    Std dev 

tgff1 0.8346 0.4036 

tgff2 0.4259 0.3027 

tgff3 0.8130 0.1514 

tgff4 0.2502 0.1010 



Third, the CoreNoC_SA and TAPP achieve averagely equal re-
sults. For the four CMP benchmarks, CoreNoC_SA and TAPP reduce 
the maximum temperature by 1.36°C and 1.25°C with averagely 2.97% 
and 2.17% latency penalty compared to MinLat_SA algorithm, re-
spectively. The maximum penalty of TAPP is 3.30% in PARSEC 1. 
For the four MPSoC benchmarks, they reduce temperature by 3.66°C 
and 4.40°C with averagely 1.87% and 2.32% latency penalty. The 
maximum penalty of TAPP is 3.40% in TGFF 2. However, the results 
achieved by TAPP are obtained within a much smaller execution time. 
The SA results shown in Figure 5 are given 1e5 times of iterations 
each, taking an average of 437.4 seconds, leading to 112X execution 
time compared to TAPP which takes 3.9 seconds to finish.  

C. Power Consumption 

The power overhead associated with the temperature-aware map-
ping in previous and this work comes from the extra dynamic power 
of NoC due to higher network activity. However, since the TAPP 
algorithm achieves minimal latency penalty, the activity factor of NoC 
is increased only by a small amount, thus introducing very small pow-
er overhead. According to McPAT and DSENT models, TAPP has an 
average chip power overhead of 0.21% for PARSEC benchmarks and 
0.96% for TGFF benchmarks. 

VI. CONCLUSIONS 

This paper addresses the important issue of temperature-aware ap-
plication mapping in many-core processors. We analyze the thermal 
impact of NoC routers and formulate a mapping problem that takes 
into consideration the power of cores and routers as well as the 
tradeoff between latency and temperature. An efficient temperature-
aware partitioning and placement (TAPP) algorithm is proposed to 
mitigate on-chip hotspots while sacrificing little network performance. 
Simulation results on 8x8 mesh networks using PARSEC and TGFF 
benchmarks demonstrate the effectiveness of TAPP in mapping results 
and algorithm execution time. 
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Figure 5. PARSEC benchmark results (average latency of Random: 28.7 cycles) and TGFF benchmark results (average latency of Random: 30.7 cycles). 
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